PERLITE EXFOLIATED ## **Horizon Chemical Co Inc** Chemwatch: 19911 Version No: 7.1 Safety Data Sheet according to OSHA HazCom Standard (2024) requirements ## Chemwatch Hazard Alert Code: 2 Issue Date: **06/20/2022**Print Date: **04/15/2025**S.GHS.USA.EN ## **SECTION 1 Identification** ## **Product Identifier** | Product name | PERLITE EXFOLIATED | | |-------------------------------|---|--| | Chemical Name | Not Available | | | Synonyms | perlite expanded; perlite expanded and milled | | | Chemical formula | Not Available | | | Other means of identification | Not Available | | | CAS number | 93763-70-3 | | ## Recommended use of the chemical and restrictions on use | Relevant | identified | uses | |-------------|------------|------| | I CIC VUIIL | Idelitiica | uses | Used as a light weight component in aggregates for concrete, plaster. Used in heat insulation and acoustic insulation. Used as an absorbent for spills. Used as packing material. Perlite is an amorphous volcanic glass that has a relatively high water content, typically formed by the hydration of obsidian. Material can absorb large quantities of liquid. It occurs naturally and has the unusual property of greatly expanding when heated sufficiently. It is an industrial mineral and a commercial product useful for its light weight after processing. ## Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | Horizon Chemical Co Inc | | |-------------------------|--|--| | Address | 4444 Round Lake Rd W Arden Hills, MN 55112 United States | | | Telephone | 651-917-3075 | | | Fax | 651-917-3087 | | | Website | www.horizonpoolsupply.com | | | Email | info@horizonpoolsupply.com | | ## **Emergency phone number** | Association / Organisation | Infotrack | CHEMWATCH EMERGENCY RESPONSE (24/7) | |-------------------------------------|--------------|-------------------------------------| | Emergency telephone number(s) | 800-535-5053 | +1 855-237-5573 (ID#: 19911) | | Other emergency telephone number(s) | 855-237-5573 | +61 3 9573 3188 | ## SECTION 2 Hazard(s) identification Classification of the substance or mixture NFPA 704 diamond ### PERLITE EXFOLIATED Issue Date: **06/20/2022**Print Date: **04/15/2025** Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3 ### Label elements ## Hazard pictogram(s) Signal word Warning ## Hazard statement(s) | H315 | Causes skin irritation. | | |------|-----------------------------------|--| | H319 | Causes serious eye irritation. | | | H335 | May cause respiratory irritation. | | ## Hazard(s) not otherwise classified Not Applicable ## Precautionary statement(s) Prevention | P271 | Use only outdoors or in a well-ventilated area. | | |------|--|--| | P261 | Avoid breathing dust/fumes. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P264 | Wash all exposed external body areas thoroughly after handling. | | ## Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|--|--| | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | ## Precautionary statement(s) Storage | P405 | Store locked up. | | |-----------|--|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** ## **Substances** | CAS No | %[weight] | Name | |---------------|-----------|---| | 93763-70-3 | | <u>perlite</u> | | Not Available | | perlite is a sodium, potassium, aluminosilicate | | Not Available | | with less than 1% silica, crystalline | | Not Available | | typical analysis | Chemwatch: 19911 Page 3 of 17 Version No: 7.1 ### PERLITE EXFOLIATED Issue Date: **06/20/2022**Print Date: **04/15/2025** | CAS No | %[weight] | Name | |---------------|-----------|--------------------| | 7631-86-9 | 70-75 | silica amorphous | | 1344-28-1. | 12-15 | aluminium oxide | | 1313-59-3 | 3-4 | sodium monoxide | | 12136-45-7 | 3-5 | potassium monoxide | | 1345-25-1 | 0.5-2 | ferrous oxide | | 1309-48-4. | 0.2-0.7 | magnesium oxide | | 1305-78-8 | 0.5-1.5 | calcium oxide | | Not Available | 3-5 | loss on ignition | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. #### **Mixtures** See section above for composition of Substances ### **SECTION 4 First-aid measures** ## Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | ## Most important symptoms and effects, both acute and delayed See Section 11 ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 Fire-fighting measures** ## **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. ## Special hazards arising from the substrate or mixture Fire Incompatibility None known. ## Special protective equipment and precautions for fire-fighters ## Fire Fighting - When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles. - ▶ When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. Chemwatch: 19911 Page 4 of 17 Issue Date: 06/20/2022 Version No: 7.1 Print Date: 04/15/2025 ### PERLITE EXFOLIATED | | Equipment should be thoroughly decontaminated after use. | |-----------------------|--| | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers
may burn. Decomposition may produce toxic fumes of: silicon dioxide (SiO2) metal oxides When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous fumes. May emit corrosive fumes. | ## **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Methods and material for Containment and Cleaning up | | | | | |--|---|--|--|--| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. | | | | | Major Spills | Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services. | | | | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** ## Precautions for safe handling Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. ▶ Use in a well-ventilated area. Prevent concentration in hollows and sumps. ▶ DO NOT enter confined spaces until atmosphere has been checked. ▶ DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. ▶ When handling, **DO NOT** eat, drink or smoke. Safe handling Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. ▶ Store in a cool, dry, well-ventilated area. Other information • Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. ## Conditions for safe storage, including any incompatibilities | Suitable container | Polyethylene or polypropylene container. Check all containers are clearly labelled and free from leaks. | | |-------------------------|--|--| | Storage incompatibility | Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride. | | ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Chemwatch: 19911 Page 5 of 17 Issue Date: 06/20/2022 Version No: 7.1 Print Date: 04/15/2025 ### PERLITE EXFOLIATED - ▶ These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ianition. - ▶ The state of subdivision may affect the results. #### Silicas: - react with hydrofluoric acid to produce silicon tetrafluoride gas - react with xenon hexafluoride to produce explosive xenon trioxide - reacts exothermically with oxygen difluoride, and explosively with chlorine trifluoride (these halogenated materials are not commonplace industrial materials) and other fluorine-containing compounds - may react with fluorine, chlorates - are incompatible with strong oxidisers, manganese trioxide, chlorine trioxide, strong alkalis, metal oxides, concentrated orthophosphoric acid, vinyl acetate - may react vigorously when heated with alkali carbonates. - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. - Avoid contact with copper, aluminium and their alloys. ## **SECTION 8 Exposure controls / personal protection** ## **Control parameters** ## Occupational Exposure Limits (OEL) ### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--|---------------------|--|--------------------------------|------------------|------------------|-------------------| | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | perlite | Particulates Not Otherwise Regulated (PNOR)- Respirable fraction | 5 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | perlite | Particulates Not Otherwise Regulated (PNOR)- Total dust | 15 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-3 | perlite | Inert or Nuisance Dust: Respirable fraction | 5 mg/m3 / 15
mppcf | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-3 | perlite | Inert or Nuisance Dust: Total Dust | 15 mg/m3 / 50
mppcf | Not
Available | Not
Available | Not
Available | | US NIOSH Recommended
Exposure Limits (RELs) | perlite | Perlite - total | 10 mg/m3 | Not
Available | Not
Available | Not
Available | | US NIOSH Recommended
Exposure Limits (RELs) | perlite | Perlite - respirable | 5 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | silica
amorphous | Particulates Not Otherwise Regulated (PNOR)- Respirable fraction | 5 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | silica
amorphous | Particulates Not Otherwise Regulated (PNOR)- Total dust | 15 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-3 | silica
amorphous | Amorphous, including natural diatomaceous earth | 80 (%SiO2) mg/m3
/ 20 mppcf | Not
Available | Not
Available | Not
Available | | US NIOSH Recommended
Exposure Limits (RELs) | silica
amorphous | Silica, amorphous | 6 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | aluminium
oxide | alpha-Alumina- Respirable fraction | 5 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | aluminium
oxide | alpha-Alumina- Total dust | 15 mg/m3 | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-3 | aluminium
oxide | Inert or Nuisance Dust: Respirable fraction | 5 mg/m3 / 15
mppcf | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-3 | aluminium
oxide | Inert or Nuisance Dust: Total Dust | 15 mg/m3 / 50
mppcf | Not
Available | Not
Available | Not
Available | | US NIOSH Recommended
Exposure Limits (RELs) | aluminium
oxide | alpha-Alumina | Not Available | Not
Available | Not
Available | See
Appendix D | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | magnesium
oxide | Magnesium oxide fume - Total
Particulate | 15 mg/m3 | Not
Available | Not
Available | Not
Available | Chemwatch: 19911 Version No: 7.1 ## PERLITE EXFOLIATED Issue Date: **06/20/2022**Print Date: **04/15/2025** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--|--------------------|---|------------------------|------------------|------------------|-------------------| | US OSHA Permissible
Exposure Limits (PELs)
Table Z-3 | magnesium
oxide | Inert or Nuisance Dust: Respirable fraction | 5 mg/m3 / 15
mppcf | Not
Available | Not
Available | Not
Available | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-3 | magnesium
oxide | Inert or Nuisance Dust: Total Dust | 15 mg/m3 / 50
mppcf | Not
Available | Not
Available | Not
Available | | US NIOSH Recommended Exposure Limits
(RELs) | magnesium
oxide | Magnesium oxide fume | Not Available | Not
Available | Not
Available | See
Appendix D | | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | calcium oxide | Calcium oxide | 5 mg/m3 | Not
Available | Not
Available | Not
Available | | US NIOSH Recommended Exposure Limits (RELs) | calcium oxide | Calcium oxide | 2 mg/m3 | Not
Available | Not
Available | Not
Available | ## **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |--------------------|------------|-------------|-------------| | perlite | 15 mg/m3 | 230 mg/m3 | 1,400 mg/m3 | | silica amorphous | 18 mg/m3 | 200 mg/m3 | 1,200 mg/m3 | | silica amorphous | 18 mg/m3 | 100 mg/m3 | 630 mg/m3 | | silica amorphous | 120 mg/m3 | 1,300 mg/m3 | 7,900 mg/m3 | | silica amorphous | 45 mg/m3 | 500 mg/m3 | 3,000 mg/m3 | | silica amorphous | 18 mg/m3 | 740 mg/m3 | 4,500 mg/m3 | | aluminium oxide | 15 mg/m3 | 170 mg/m3 | 990 mg/m3 | | sodium monoxide | 0.5 mg/m3 | 5 mg/m3 | 50 mg/m3 | | sodium monoxide | 0.5 mg/m3 | 5 mg/m3 | 50 mg/m3 | | potassium monoxide | 0.18 mg/m3 | 2 mg/m3 | 54 mg/m3 | | ferrous oxide | 45 mg/m3 | 500 mg/m3 | 3,000 mg/m3 | | magnesium oxide | 30 mg/m3 | 120 mg/m3 | 730 mg/m3 | | calcium oxide | 6 mg/m3 | 110 mg/m3 | 660 mg/m3 | | | | | | | Ingredient | Original IDLH | Revised IDLH | |--------------------|---------------|---------------| | perlite | Not Available | Not Available | | silica amorphous | 3,000 mg/m3 | Not Available | | aluminium oxide | Not Available | Not Available | | sodium monoxide | Not Available | Not Available | | potassium monoxide | Not Available | Not Available | | ferrous oxide | Not Available | Not Available | | magnesium oxide | 750 mg/m3 | Not Available | | calcium oxide | 25 mg/m3 | Not Available | ## **Exposure controls** # Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |--|-------------------| | colvent vaneure degreesing etc. evenerating from took (in still six) | 0.25-0.5 m/s (50- | | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 100 f/min.) | Chemwatch: 19911 Page 7 of 17 Version No: 7.1 #### PERLITE EXFOLIATED Issue Date: **06/20/2022**Print Date: **04/15/2025** | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-
200 f/min.) | |---|----------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-
500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-
2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Individual protection measures, such as personal protective equipment ## Eye and face protection #### Safety glasses with side shields. - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. ## Skin protection ## See Hand protection below ## Hands/feet protection The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - $\boldsymbol{\cdot}$ Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - \cdot Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - \cdot Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high
degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Chemwatch: 19911 Page 8 of 17 Issue Date: 06/20/2022 Version No: 7.1 PERLITE EXFOLIATED Print Date: 04/15/2025 # Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. • polychloroprene. • nitrile rubber. - · Intille Tubb - butyl rubber. - fluorocaoutchouc.polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. ## Body protection See Other protection below ## Other protection - Overalls. - ▶ P.V.C apron. - Barrier cream. - Skin cleansing cream. - Skin cleansing cream - Eye wash unit. ## Respiratory protection Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | -AUS P2 | - | -PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | -AUS / Class 1 P2 | - | | up to 100 x ES | - | -2 P2 | -PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - · Use approved positive flow mask if significant quantities of dust becomes airborne. - · Try to avoid creating dust conditions. ## **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties ## Appearance Granules, powder, light weight expanded mineral. Floats on water, then sinks Material is available in a range of bulk densities. Available in a range of mesh sizes. Contains only trace of respirable sizes. When it reaches temperatures of 850-900 deg C, perlite softens (since it is a glass). Water trapped in the structure of the material vapourises and escapes and this causes the expansion of the material to 7-16 times its original volume. The expanded (or exfoliated) material is a brilliant white, due to the reflectivity of the trapped bubbles. Unexpanded ("raw") perlite bulk density: around 1100 kg/m³ (1.1 g/cm³). Typical expanded perlite bulk density: 30-150 kg/m³ Issue Date: 06/20/2022 Page **9** of **17** Print Date: 04/15/2025 PERLITE EXFOLIATED | Flammability | Not Applicable | Oxidising properties | Not Available | |---|----------------|---|----------------| | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density
(g/m3) | Not Available | | Nanoform Solubility | Not Available | Nanoform Particle
Characteristics | Not Available | | Particle Size | Not Available | | | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 Toxicological information** ## Information on toxicological effects | a) Acute Toxicity | Based on available data, the classification criteria are not met. | | | |---|---|--|--| | b) Skin Irritation/Corrosion | There is sufficient evidence to classify this material as skin corrosive or irritating. | | | | c) Serious Eye
Damage/Irritation | There is sufficient evidence to classify this material as eye damaging or irritating | | | | d) Respiratory or Skin
sensitisation | Based on available data, the classification criteria are not met. | | | | e) Mutagenicity | Based on available data, the classification criteria are not met. | | | | f) Carcinogenicity | Based on available data, the classification criteria are not met. | | | | g) Reproductivity | Based on available data, the classification criteria are not met. | | | | h) STOT - Single Exposure | There is sufficient evidence to classify this material as toxic to specific organs through single exposure | | | | i) STOT - Repeated
Exposure | Based on available data, the classification criteria are not met. | | | | j) Aspiration Hazard | Based on available data, the classification criteria are not met. | | | | Inhaled | Acute effects of inhalation of dust are nasal irritation, coughing. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. | | | | Ingestion | The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract | | | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition | | | Chemwatch: 19911 Page 10 of 17 Issue Date: 06/20/2022 Version No: 7.1 Print Date: 04/15/2025 PERLITE EXFOLIATED Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or
abrasions. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation. Irritation and skin reactions are possible with sensitive skin Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Eve This material can cause eye irritation and damage in some persons. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm. Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces Chronic stringy phlegm, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung Removing workers from the possibility of further exposure to dust generally stops the progress of lung abnormalities. When there is high potential for worker exposure, examinations at regular period with emphasis on lung function should be performed. Inhaling dust over an extended number of years may cause pneumoconiosis, which is the accumulation of dusts in the lungs and the subsequent tissue reaction. This may or may not be reversible. Amorphous silicas generally are less hazardous than crystalline silicas, but the former can be converted to the latter on heating and subsequent cooling. Inhalation of dusts containing crystalline silicas may lead to silicosis, a disabling lung disease that may take years to develop. | | TOXICITY | IRRITATION | |--------------------|---|---------------| | PERLITE EXFOLIATED | Oral (Mouse) LD50; 12960 mg/kg ^[2] | Not Available | | Legend: | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some SILICA AMORPHOUS The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic Animal testing shows that perlite does not cause lung fibrosis more than the raw ore. Chest X-ray in people in the perlite industry showed that workers with over 15 years service had a higher rate of abnormalities, but this could not be attributed ## MAGNESIUM OXIDE skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. ## PERLITE EXFOLIATED & PERLITE & SODIUM **MONOXIDE & POTASSIUM MONOXIDE & MAGNESIUM OXIDE & CALCIUM OXIDE** Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a nonallergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. ### PERLITE EXFOLIATED & SILICA AMORPHOUS For silica amorphous: unambiguously to perlite exposure. experiments these effects were reversible. [PATTYS] Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d. In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation, Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin. When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption Chemwatch: 19911 Page 11 of 17 Issue Date: 06/20/2022 Version No: 7.1 Print Date: 04/15/2025 #### PERLITE EXFOLIATED across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification. Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser. Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact. Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure. Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL. Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected. For Synthetic Amorphous Silica (SAS) Repeated dose toxicity Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet. Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) =1.3 mg/m3 based on mild
reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity. For silane treated synthetic amorphous silica: Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested. There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS. ### SILICA AMORPHOUS & **FERROUS OXIDE** The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. ### **ALUMINIUM OXIDE & SODIUM MONOXIDE & POTASSIUM MONOXIDE &** FERROUS OXIDE No significant acute toxicological data identified in literature search. ## SODIUM MONOXIDE & **POTASSIUM MONOXIDE** produce conjunctivitis. The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | ~ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | X - Data either not available or does not fill the criteria for classification Legend: Data available to make classification ## **SECTION 12 Ecological information** ## **Toxicity** | | Endpoint | Test Duration (hr) | Species | Value | Source | |--------------------|--|--------------------|---------------|------------------|------------------| | PERLITE EXFOLIATED | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | For Metal: Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Chemwatch: 19911 Page 12 of 17 Version No: 7.1 #### PERLITE EXFOLIATED Issue Date: **06/20/2022**Print Date: **04/15/2025** Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects. For Amorphous Silica: Amorphous silica is chemically and biologically inert. It is not biodegradable. Aquatic Fate: Due to its insolubility in water there is a separation at every filtration and sedimentation process. On a global scale, the level of man-made synthetic amorphous silicas (SAS) represents up to 2.4% of the dissolved silica naturally present in the aquatic environment and untreated SAS have a relatively low water solubility and an extremely low vapour pressure. Biodegradability in sewage treatment plants or in surface water is not applicable to inorganic substances like SAS Terrestrial Fate: Crystalline and/or amorphous silicas are common on the earth in soils and sediments, and in living organisms (e.g. diatoms), but only the dissolved form is bioavailable. On the basis of these properties it is expected that SAS released into the environment will be distributed mainly into soil/sediment. Surface treated silica will be wetted then adsorbed onto soils and sediments. Atmospheric Fate: SAS is not expected to be distributed into the air if released. Ecotoxicity: SAS is not toxic to environmental organisms (apart from physical desiccation in insects). SAS presents a low risk for adverse effects to the environment For Silica: Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (manmade or natural), or structure, (crystalline or amorphous). Terrestrial Fate: Silicon makes up 25.7% of the Earth's crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinction can be made between the initial forms of silica. Aquatic Fate: At normal environmental pH, dissolved silica exists exclusively as monosilicic acid. At pH 9.4, amorphous silica is highly soluble in water. Crystalline silica, in the form of quartz, has low solubility in water. Silicic acid plays an important role in the biological/geological/chemical cycle of silicon, especially in the ocean. Marine organisms such as diatoms, silicoflagellates and radiolarians use silicic acid in their skeletal structures and their skeletal remains leave silica in sea sediment Ecotoxicity: Silicon is important to plant and animal life and is practically non-toxic to fish including zebrafish, and Daphnia magna water fleas. #### DO NOT discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------|-------------------------|------------------| | silica amorphous | LOW | LOW | ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | | |------------------|-----------------------|--| | silica amorphous | LOW (LogKOW = 0.5294) | | | sodium monoxide | LOW (LogKOW = -5.08) | | ## Mobility in soil | Ingredient | Mobility | | |------------------|-----------------------|--| | silica amorphous | LOW (Log KOC = 23.74) | | ## Other adverse effects No evidence of ozone depleting properties were found in the current literature. ## **SECTION 13 Disposal considerations** ## Waste treatment methods ## Product / Packaging disposal Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. Chemwatch: 19911 Page 13 of 17 Version No: 7.1 #### PERLITE EXFOLIATED Issue Date: **06/20/2022**Print Date: **04/15/2025** - Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Management Authority for disposal. - Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. ## **SECTION 14 Transport information** ## **Labels Required** Marine Pollutant NO Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS 14.7. Maritime transport in bulk according to IMO instruments ### 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------------|---------------| | perlite | Not Available | | silica amorphous | Not Available | | aluminium oxide | Not Available | | sodium monoxide | Not Available | | potassium monoxide | Not Available | | ferrous oxide | Not Available | |
magnesium oxide | Not Available | | calcium oxide | Not Available | ## 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------------|---------------| | perlite | Not Available | | silica amorphous | Not Available | | aluminium oxide | Not Available | | sodium monoxide | Not Available | | potassium monoxide | Not Available | | ferrous oxide | Not Available | | magnesium oxide | Not Available | | calcium oxide | Not Available | ## **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture ## perlite is found on the following regulatory lists International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5 US - Massachusetts - Right To Know Listed Chemicals US - New Jersey Right to Know Hazardous Substances US - Pennsylvania - Hazardous Substance List US DOE Temporary Emergency Exposure Limits (TEELs) US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Limits (PELs) Table Z-1 US OSHA Permissible Exposure Limits (PELs) Table Z-3 ## silica amorphous is found on the following regulatory lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic Chemwatch: 19911 Page 14 of 17 Issue Date: 06/20/2022 Version No. 7.1 Print Date: 04/15/2025 PERLITE EXFOLIATED International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5 US - California - Biomonitoring - Priority Chemicals US - California Proposition 65 - Carcinogens US - California Safe Drinking Water and Toxic Enforcement Act of 1986 - Proposition 65 List US - Massachusetts - Right To Know Listed Chemicals US - New Jersey Right to Know Hazardous Substances US - Pennsylvania - Hazardous Substance List US DOE Temporary Emergency Exposure Limits (TEELs) US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Limits (PELs) Table Z-1 US OSHA Permissible Exposure Limits (PELs) Table Z-3 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory #### aluminium oxide is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5 US - Massachusetts - Right To Know Listed Chemicals US - New Jersey Right to Know Hazardous Substances US - Pennsylvania - Hazardous Substance List US DOE Temporary Emergency Exposure Limits (TEELs) US EPCRA Section 313 Chemical List US New York City Community Right-to-Know: List of Hazardous Substances US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Limits (PELs) Table Z-1 US OSHA Permissible Exposure Limits (PELs) Table Z-3 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ### sodium monoxide is found on the following regulatory lists US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Corrosives US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Reactive Materials US - New Jersey Right to Know Hazardous Substances US DOE Temporary Emergency Exposure Limits (TEELs) US New York City Community Right-to-Know: List of Hazardous Substances US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ## potassium monoxide is found on the following regulatory lists US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Corrosives US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Reactive Materials US - New Jersey Right to Know Hazardous Substances US DOE Temporary Emergency Exposure Limits (TEELs) US New York City Community Right-to-Know: List of Hazardous Substances US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ## ferrous oxide is found on the following regulatory lists US - Pennsylvania - Hazardous Substance List US DOE Temporary Emergency Exposure Limits (TEELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ## magnesium oxide is found on the following regulatory lists International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5 US - Massachusetts - Right To Know Listed Chemicals US - New Jersev Right to Know Hazardous Substances US - Pennsylvania - Hazardous Substance List US DOE Temporary Emergency Exposure Limits (TEELs) US New York City Community Right-to-Know: List of Hazardous Substances US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Limits (PELs) Table Z-1 US OSHA Permissible Exposure Limits (PELs) Table Z-3 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ## calcium oxide is found on the following regulatory lists US - Massachusetts - Right To Know Listed Chemicals US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Corrosives PERLITE EXFOLIATED Issue Date: 06/20/2022 Print Date: 04/15/2025 ### US - New Jersey Right to Know Hazardous Substances US - Pennsylvania - Hazardous Substance List US DOE Temporary Emergency Exposure Limits (TEELs) US New York City Community Right-to-Know: List of Hazardous Substances US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Limits (PELs) Table Z-1 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory ## **Additional Regulatory Information** Not Applicable ## **Federal Regulations** ### Superfund Amendments and Reauthorization Act of 1986 (SARA) ### Section 311/312 hazard categories | Flammable (Gases, Aerosols, Liquids, or Solids) | No | |--|-----| | Gas under pressure | No | | Explosive | No | | Self-heating | No | | Pyrophoric (Liquid or Solid) | No | | Pyrophoric Gas | No | | Corrosive to metal | No | | Oxidizer (Liquid, Solid or Gas) | No | | Organic Peroxide | No | | Self-reactive | No | | In contact with water emits flammable gas | No | | Combustible Dust | No | | Carcinogenicity | No | | Acute toxicity (any route of exposure) | No | | Reproductive toxicity | No | | Skin Corrosion or Irritation | Yes | | Respiratory or Skin Sensitization | No | | Serious eye damage or eye irritation | Yes | | Specific target organ toxicity (single or repeated exposure) | No | | Aspiration Hazard | No | | Germ cell mutagenicity | No | | Simple Asphyxiant | No | | Hazards Not Otherwise Classified | No | ## US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4) None Reported ## US. EPCRA Section 313 Toxic Release Inventory (TRI) (40 CFR 372) This product contains the following EPCRA section 313 chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know-Act of 1986 (40 CFR 372): | CAS No | %[weight] | Name | |---|-----------|-----------------| | 1344-28-1. | 12-15 | aluminium oxide | | This information must be included in all 000s that are conical and distributed for this material. | | | This information must be included in all SDSs that are copied and distributed for this material. ## **Additional Federal Regulatory Information** Not Applicable ## **State Regulations** ## US. California Proposition 65 MARNING: This product can expose you to chemicals including silica amorphous, which is known to the State of California to cause cancer. For more information, go to www.P65Warnings.ca.gov ## **Additional State Regulatory Information** Chemwatch: 19911 Version No: 7.1 PERLITE EXFOLIATED Issue Date: **06/20/2022**Print Date: **04/15/2025** Not Applicable ## **National Inventory Status** | National Inventory | status | | | | |--|--|--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | | Canada - DSL | Yes | | | | | Canada - NDSL | No (perlite; aluminium oxide; sodium monoxide; potassium monoxide; ferrous oxide; magnesium oxide; calcium oxide) | | | | | China - IECSC | Yes | | | | | Europe - EINEC / ELINCS /
NLP | No (perlite) | | | | | Japan - ENCS | No (perlite) | | | | | Korea - KECI | Yes | | | | | New Zealand - NZIoC | Yes | | | | | Philippines - PICCS | No (ferrous oxide) | | | | | USA - TSCA | TSCA Inventory 'Active' substance(s) (silica amorphous; aluminium oxide; sodium monoxide; potassium monoxide; ferrous oxide magnesium oxide; calcium oxide); No (perlite) | | | | | Taiwan - TCSI | Yes | | | | | Mexico - INSQ | Yes | | | | | Vietnam - NCI | Yes | | | | | Russia - FBEPH | No (perlite) | | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | | | ## **SECTION 16 Other information** | Revision Date | 06/20/2022 | |---------------|------------| | Initial Date | 06/28/2004 | ## **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------
--| | 4.1 | 11/25/2009 | Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), Physical and chemical properties - Appearance, Toxicological information - Chronic Health, Hazards identification - Classification, Disposal considerations - Disposal, Exposure controls / personal protection - Engineering Control, Ecological Information - Environmental, Exposure controls / personal protection - Exposure Standard, Firefighting measures - Fire Fighter (extinguishing media), Firefighting measures - Fire Fighter (fire/explosion hazard), Firefighting measures - Fire Fighter (fire incompatibility), First Aid measures - First Aid (inhaled), First Aid measures - First Aid (skin), First Aid measures - First Aid (swallowed), Handling and storage - Handling Procedure, Composition / information on ingredients - Ingredients, Stability and reactivity - Instability Condition, Exposure controls / personal protection - Personal Protection (other), Exposure controls / personal protection - Personal Protection (Personal Protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection (hands/feet), Accidental release measures - Spills (major), Accidental release measures - Spills (minor), Handling and storage - Storage (storage incompatibility), Handling and storage - Storage (storage requirement), Handling and storage - Storage (suitable container), Identification of the substance / mixture and of the company / undertaking - Supplier Information, Toxicological information - Toxicity and Irritation (Other), Identification of the substance / mixture and of the company / undertaking - Use | | 7.1 | 06/19/2022 | Expiration. Review and Update | ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ► IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists Chemwatch: 19911 Page 17 of 17 Issue Date: 06/20/2022 Version No: 7.1 Print Date: 04/15/2025 ### PERLITE EXFOLIATED - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - ▶ OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ MARPOL: International Convention for the Prevention of Pollution from Ships - ▶ IMSBC: International Maritime Solid Bulk Cargoes Code - ▶ IGC: International Gas Carrier Code - ▶ IBC: International Bulk Chemical Code - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ▶ TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - ▶ NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances ## This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.